552 research outputs found

    Bypassing the energy-time uncertainty in time-resolved photoemission

    Get PDF
    The energy-time uncertainty is an intrinsic limit for time-resolved experiments imposing a tradeoff between the duration of the light pulses used in experiments and their frequency content. In standard time-resolved photoemission, this limitation maps directly onto a tradeoff between the time resolution of the experiment and the energy resolution that can be achieved on the electronic spectral function. Here we propose a protocol to disentangle the energy and time resolutions in photoemission. We demonstrate that dynamical information on all time scales can be retrieved from time-resolved photoemission experiments using suitably shaped light pulses of quantum or classical nature. As a paradigmatic example, we study the dynamical buildup of the Kondo peak, a narrow feature in the electronic response function arising from the screening of a magnetic impurity by the conduction electrons. After a quench, the electronic screening builds up on timescales shorter than the inverse width of the Kondo peak and we demonstrate that the proposed experimental scheme could be used to measure the intrinsic time scales of such electronic screening. The proposed approach provides an experimental framework to access the nonequilibrium response of collective electronic properties beyond the spectral uncertainty limit and will enable the direct measurement of phenomena such as excited Higgs modes and, possibly, the retarded interactions in superconducting systems.Comment: Extended introduction, added references to section IIB, improved wording in section II

    Static and dynamic measures of human brain connectivity predict complementary aspects of human cognitive performance

    Get PDF
    In cognitive network neuroscience, the connectivity and community structure of the brain network is related to cognition. Much of this research has focused on two measures of connectivity - modularity and flexibility - which frequently have been examined in isolation. By using resting state fMRI data from 52 young adults, we investigate the relationship between modularity, flexibility and performance on cognitive tasks. We show that flexibility and modularity are highly negatively correlated. However, we also demonstrate that flexibility and modularity make unique contributions to explain task performance, with modularity predicting performance for simple tasks and flexibility predicting performance on complex tasks that require cognitive control and executive functioning. The theory and results presented here allow for stronger links between measures of brain network connectivity and cognitive processes.Comment: 37 pages; 7 figure

    Brain Modularity Mediates the Relation between Task Complexity and Performance

    Full text link
    Recent work in cognitive neuroscience has focused on analyzing the brain as a network, rather than as a collection of independent regions. Prior studies taking this approach have found that individual differences in the degree of modularity of the brain network relate to performance on cognitive tasks. However, inconsistent results concerning the direction of this relationship have been obtained, with some tasks showing better performance as modularity increases and other tasks showing worse performance. A recent theoretical model (Chen & Deem, 2015) suggests that these inconsistencies may be explained on the grounds that high-modularity networks favor performance on simple tasks whereas low-modularity networks favor performance on more complex tasks. The current study tests these predictions by relating modularity from resting-state fMRI to performance on a set of simple and complex behavioral tasks. Complex and simple tasks were defined on the basis of whether they did or did not draw on executive attention. Consistent with predictions, we found a negative correlation between individuals' modularity and their performance on a composite measure combining scores from the complex tasks but a positive correlation with performance on a composite measure combining scores from the simple tasks. These results and theory presented here provide a framework for linking measures of whole brain organization from network neuroscience to cognitive processing.Comment: 47 pages; 4 figure

    The effects of mismatched cultural dimensions on supply chain flexibility - a case study of TOMRA Collection Solutions

    Get PDF
    Confidential until 30. May 201

    Microbiota composition of simultaneously colonized mice housed under either a gnotobiotic isolator or individually ventilated cage regime

    Get PDF
    Germ-free rodents colonized with microbiotas of interest are used for host-microbiota investigations and for testing microbiota-targeted therapeutic candidates. Traditionally, isolators are used for housing such gnotobiotic rodents due to optimal protection from the environment, but research groups focused on the microbiome are increasingly combining or substituting isolator housing with individually ventilated cage (IVC) systems. We compared the effect of housing systems on the gut microbiota composition of germ-free mice colonized with a complex microbiota and housed in either multiple IVC cages in an IVC facility or in multiple open-top cages in an isolator during three generations and five months. No increase in bacterial diversity as assessed by 16S rRNA gene sequencing was observed in the IVC cages, despite not applying completely aseptic cage changes. The donor bacterial community was equally represented in both housing systems. Time-dependent clustering between generations was observed in both systems, but was strongest in the IVC cages. Different relative abundance of a Rikenellaceae genus contributed to separate clustering of the isolator and IVC communities. Our data suggest that complex microbiotas are protected in IVC systems, but challenges related to temporal dynamics should be addressed

    Predictive MGMT status in a homogeneous cohort of IDH wildtype glioblastoma patients

    Get PDF
    Methylation of the O(6)-Methylguanine-DNA methyltransferase (MGMT) promoter is predictive for treatment response in glioblastoma patients. However, precise predictive cutoff values to distinguish "MGMT methylated" from "MGMT unmethylated" patients remain highly debated in terms of pyrosequencing (PSQ) analysis. We retrospectively analyzed a clinically and molecularly very well-characterized cohort of 111 IDH wildtype glioblastoma patients, who underwent gross total tumor resection and received standard Stupp treatment. Detailed clinical parameters were obtained. Predictive cutoff values for MGMT promoter methylation were determined using ROC curve analysis and survival curve comparison using Log-rank (Mantel-Cox) test. MGMT status was analyzed using pyrosequencing (PSQ), semi-quantitative methylation specific PCR (sqMSP) and direct bisulfite sequencing (dBiSeq). Highly methylated (> 20%) MGMT correlated with significantly improved progression-free survival (PFS) and overall survival (OS) in our cohort. Median PFS was 7.2 months in the unmethylated group (UM, 20% mean methylation). Median OS was 13.4 months for UM, 17.9 months for LM and 29.93 months for HM. Within the LM group, correlation of PSQ and sqMSP or dBiSeq was only conclusive in 51.5% of our cases. ROC curve analysis revealed superior test precision for survival if additional sqMSP results were considered (AUC = 0.76) compared to PSQ (cutoff 10%) alone (AUC = 0.67). We therefore challenge the widely used, strict PSQ cutoff at 10% which might not fully reflect the clinical response to alkylating agents and suggest applying a second method for MGMT testing (e.g. MSP) to confirm PSQ results for patients with LM MGMT levels if therapeutically relevant

    AutomAl 6000: Semi-automatic structural labelling of HAADF-STEM images of precipitates in Al–Mg–Si(–Cu) alloys

    Get PDF
    When the Al–Mg–Si(–Cu) alloy system is subjected to age hardening, different types of precipitates nucleate depending on the composition and thermomechanical treatment. The main hardening precipitates extend as needles, laths or rods along the directions in the aluminium matrix. It has been found that the structures of all metastable precipitates may be generalized as stacks of columns, where most of these columns are replaced by solute elements. In the precipitates, a column relates to neighbour columns by a set of simple structural principles, which allows identification of species and relative longitudinal displacement over the (100) cross-section. Aberration-corrected high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) is an important tool for studying such precipitates. With the goal of analysing atomic resolution HAADF-STEM images of precipitate cross-sections in the Al–Mg–Si(–Cu) system, we have developed the stand-alone software AutomAl 6000, which features a column characterization algorithm based on the symbiosis of a statistical model and the structural principles formulated in a digraph-like framework. The software can semi-autonomously determine the 3D column positions in the image, as well as column species. In turn, AutomAl 6000 can then display, analyse and/or export the structure data. This paper describes the methodology of AutomAl 6000 and applies it on three different HAADF-STEM images, which demonstrate the methodology. The software, as well as other resources, are available at http://automal.org. The source code is also directly available from https://github.com/Haawk666/AutomAl-6000.publishedVersio
    • …
    corecore